

"LA COMBUSTIONE DI IDROGENO IN AMBITO INDUSTRIALE"

Le sfide da affrontare e le opportunità per la filiera

Tenova Hydrogen SmartBurner per forni riscaldo e trattamento del settore metalli

Enrico Malfa – R&D Director

The challenge for the Hydrogen

Hard to abate sector need
flexible solutions
to preserve
the investment

Hydrogen Ready Burners

TENOVA HYDROGEN ROADMAP DEVELOPMENT

TSX - Lateral Flameless burner for Reheating Furnaces

TRKSX - Flameless Self-recuperative burner for Treatment Furnaces

Burners are able to work with any mixtures of NG/H₂ up to 100% H2

Next steps

- Flat Flame burners
- Self-recuperative burners for radiant tubes

Hydrogen ready combustion systems

Re-heating / Lateral / TSX

Treatment / Lateral / TRKSX

NOx vs H2 Content in NG/H2 Fuel Mixtures

Tenova SmartBurner platform

AN INTEGRATED IIOT APPROACH TO PROCESS & EQUIPMENT MONITORING

- Embedded sensors in each single SmartBurner
- Proprietary optical sensor for combustion quality monitoring
- AlphaEdge extracts statistics from signals
- TenovaEdge streams burner data to Tenova Cloud.

TenovaEdge

connection to Tenova Cloud

AlphaEdge

Tenova IoT device

- Overview: KPIs and KHIs for monitoring from plant operators.
- Monitoring: real-time signals from embedded sensors on critical parts for remote troubleshooting.
- Trend Manager: for investigating correlations and long-term trends.

What's the NEXT STEPs

Hydrogen combustion allows an instant and direct reduction of CO₂ emissions:

	NG [%]	H ₂ [%]	LHV [kcal/N m₃]	Waste Gases Composition					
				O ₂ [%]	N ₂ [%]	CO ₂ [%]	H ₂ O [%]	reduc. [%]	
	100%	0%	8590	0.91%	71.83%	9,1%	18,17%	-	
	90%	10%	7989	0.90%	71.66%	8.82%	18.62%	-3,2%	l
	80%	20%	7389	0.90%	71.44%	8.51%	19.15%	-7,0%	
	50%	50%	5589	0.89%	70.65%	7.14%	21.42%	-23,1%	
	31%	69%	4448	0.88%	69.57%	5.66%	23.90%	-40%	l
	23%	77%	3968	0.87%	68.97%	4.75%	25.41%	-50%	
	0%	100%	2590	0.83%	65.28%	0%	33.34%	-100%	

Effect of H₂ atmosphere

Impact on product (scale formation, yield)

Impact on insulation materials (burner block, lining, gases duct)

Avoidance of undesired conditions (i.e. condensation)

Secure the supply of H₂ (generation, storage & transport)

Long-term trials (industrial demonstration)

Flameless Combustion is the technology:

- NOx reduction
- Coupling with high air temperature
- Increment of temperature uniformity
- Thermal stress reduction on burner parts

Tenaris Dalmine Zero Emission

ROLLING MILL DEMO PROJECT

Objectives

 Industrial field test of a H₂-ready burner installed in a industrial furnace in Tenaris steel shop, with 100% H₂ fuel

Performed activities

- Burner design and construction
- Sizing of the electrolyser

Next steps

- Supply of the electrolyser
- Installation in Tenaris
- Long term test

The roles of partners

- Temporary supply & operation of the containerized electrolyser
- engineering for integration of electrolysis and buffering system
- assistance with permits
- H₂ ready burners supplier
- Equipment installation
- Furnace operation
- Electricity supply

Tenova first industrial reference

HYDROGEN / NATURAL GAS FIRING IN A HEAT TREATMENT FURNACE

Tenova's first industrial furnace for **full H₂ firing** using our **TRKSX H₂/NG SmartBurners** is currently under construction: erection started on March 16th – furnace light up scheduled by the end of June 2022

H₂ availability quantities and cost

H₂ combustion in steelmaking

ENABLER FACTORS

McKinsey Hydrogen Insights – July 2021

Effects on the product quality

Combustion System

Tenova Hydrogen
SmartBurner
per forni riscaldo e
trattamento del settore
metalli

enrico.malfa@tenova.com

R&D Director
TENOVA S.p.A.

